教授(以拼音字母排序)

袁赛瑜
发布者:水电院 发布时间:2019-10-15 浏览次数:1747


姓  名

袁赛瑜

性  别

出生年月

1987年3月

职  称

青年教授

毕业学校

河海大学

专  业

水力学及河流动力学

学 位

博士

联系电话


电子邮件

yuansaiyu@hhu.edu.cn

研究方向

河流动力过程及环境生态响应、河流环境生态治理

获奖情况

   2019年,中国科协“优秀中外青年交流计划”

 2019年,霍英东教育基金会青年教师基金获得者

 2018年,江苏省“科协青年科技人才托举工程”培养对象

 2017年,江苏省科学技术一等奖,平原河流水沙运动模拟测控成套技术与应用(9/11

 2017年,大禹水利科学技术二等奖,滨海城市洪涝风险动态预判与智能跟踪关键技术及应用(9/12

 2017年,河海大学“大禹学者”培养对象

 2015年,江苏省优秀博士学位论文

 2015年,南京市自然科学优秀学术论文一等奖

 2013年,江苏省科学技术一等奖,复杂河网水力调控关键技术及实践(8/11

主要成果


袁赛瑜,河海大学青年教授,河海大学水利水电工程基地强化班学士、水力学及河流动力学博士,美国俄勒冈州立大学、杰克逊州立大学联合培养,新西兰奥克兰大学访问学者,SCI检索期刊《Journal of Coastal Research》副主编、《Fluid Dynamics & Materials Processing》编委、水文水资源与水利工程科学国家重点实验室固定成员、长江保护与绿色发展研究院研究成员、水力学及河流研究所副所长、淮河研究中心副主任。霍英东教育基金会青年教师基金项目获得者,入选中国科协“优秀中外青年交流计划”、江苏省科协“青年托举工程”培养对象。长期从事河流动力过程及生态环境响应方面的理论研究和工程实践,与剑桥大学、奥克兰大学、渥太华大学、爱荷华大学等学府著名学者保持长期学术合作,合作开展野外观测、数学模拟和室内试验方面的研究。主持霍英东教育基金、国家自然基金面上项目、国家重点研发计划专题等项目14项;发表《Journal of Hydrology》等TOP 期刊论文35篇,其中SCI检索论文20余篇(第1作者8篇,通讯作者3篇),授权发明专利5项(国际专利1项);多次受邀在奥克兰大学等学府以及重要学术会议做演讲报告。出版英文专著和中文专著各1部。参编行业标准2部。获江苏省优秀博士论文、南京市优秀学术论文一等奖。获江苏省科学技术一等奖2项(2013年、2017年)、大禹水利科技二等奖1项(2017年)。主讲《水工建筑物》等本科课程,邀请3位国外专家开设《Applied Hydraulics》等本科和研究生课程3门。指导渥太华大学交流生、缅甸留学生等。

代表性论著:

1. Yuan S., Tang H., Xiao Y., et al. Phosphorus contamination of the surface sediment at a river confluence. Journal of Hydrology, 2019, 573, 568-580.

2. Yuan S., Tang H., Xiao Y., et al. Water flow and sediment transport at open-channel confluences: an experimental study. Journal of Hydraulic Research, 2018, 56(3), 333-350.

3. Yuan S., Tang H., Xiao Y., et al. Spatial variability of phosphorus adsorption in surface sediment at channel confluences: Field and laboratory experimental evidence. Journal of Hydro-environment Research, 2018, 18, 25-36.

4. Yuan S., Tang H., Xiao Y., et al. Turbulent flow structure at a 90-degree open channel confluence: accounting for the distortion of the shear layer. Journal of Hydro-environment Research, 2016, 12, 130-147.

5. Yuan S., Tang H., Li L., et al. Combined wave and surge overtopping erosion failure model of HPTRM levees: accounting for grass-mat strength. Ocean Engineering, 2015, 109, 256-269.

6. Yuan S., Li L., Amini F., et al. Turbulence measurement of combined wave and surge overtopping of a full-scale HPTRM-strengthened levee. Journal of Waterway Port Coastal & Ocean Engineering-ASCE, 2014, 140(4), 86-95.

7. Yuan S., Li L., Amini F., et al. Sensitivity of combined turbulent wave overtopping and storm surge overflow response to variations in levee geometry. Journal of Coastal Research, 2015, 313(3):702-713.

8. Yuan S., Li L., Amini F., et al. Numerical study of turbulence and erosion of an HPTRM-Strengthened Levee under combined storm surge overflow and wave overtopping. Journal of Coastal Research, 2014, 293(1):142-157.

9. Yu Q., Yuan S., Rennie C.D. Experiments on the morphodynamics of open channel confluences: Implications for the accumulation of contaminated sediments. Journal of Geophysical Research: Earth Surface, 2020, 125, e2019JF005438.

10. Li L., Yuan S., Amini F., et al. Numerical study of combined wave overtopping and storm surge overflow of HPTRM strengthened levee. Ocean Engineering, 2015, 97, 1-15.

11. Tang H, Cao H, Yuan S., Yang Xiao, Chenyu Jiang, Carlo Gualtieri. A numerical study of hydrodynamic processes and flood mitigation in a large river-lake system [J]. Water Management Research, 2020, 34, 3739-3760.

12. Tang H., Zhang H., Yuan S. Response to discussion of hydrodynamics and contaminant transport on the degraded bed at a 90-degree channel confluence. Environmental Fluid Mechanics, 2018, 18(9), 1297–1299.iao Y., Yang Xia, Yuan S., Tang H.: Distribution of phosphorus in bed sediment at confluences responding to hydrodynamics. Water Management, 2019, 172(3): 149-162.

13. Tang H., Zhang H., Yuan S. Hydrodynamics and contaminant transport on a degraded bed at a 90-degree channel confluence. Environmental Fluid Mechanics, 2018, 18(2), 443-463.

14. Xiao Y., Xia Y., Yuan S., et al. Distribution of phosphorus in bed sediment at confluences responding to hydrodynamics. Water Management, 2019, 172(3): 149-162.

15. Xiao Y., Xia Y., Yuan S., et al. Flow structure and phosphorus adsorption in bed sediment at a 90° channel confluence. Journal of Hydrodynamics, 2017, 29(5), 902-905.

16. Tang H., Li Q., Yuan S., et al. Effect of aggregation on the adsorption of phosphorus onto air-dried sediment in contrasting shear flow conditions. Journal of Soils and Sediments, 2017, 17(8), 2177–2186.

17. Du Q., Tang H., Yuan S., et al. Predicting flow rate and sediment in bifurcated river branches. Water Management, 2016, 169(4), 156-167.

18. Wang H., Tang H., Yuan S., et al. An experimental study of the incipient bed shear stress partition in mobile bed channels filled with emergent rigid vegetation. Science China Technological Sciences, 2014, 57(6), 1165-1174.

19. Zhao H., Yan J., Yuan S., et al. Effects of submerged vegetation density on turbulent flow characteristics in an open channel. Water, 2019 11(10): 2154.

20. Tang H., Zhao H., Li Z., Yuan S., et al. Phosphorus sorption to suspended sediment in freshwater. Water Management, 2017, 170(5), 231-242.

21. Tang H., Tian Z., Yan J., Yuan S. Determining drag coefficients and their application in modelling of turbulent flow with submerged vegetation. Advances in Water Resources, 2014, 69, 134-145.

22. Jin G., Yang W., Xu H., Zhang Z., Yuan S., et al. Density effects on solute release from streambeds. Hydrological Processes, 2020, 34(5), 1144-1153. 

23. Zhang T, Xiao Y, Liang D, Tang H, Yuan S, et al. Rainfall Runoff and Dissolved Pollutant Transport Processes Over Idealized Urban Catchments. Front. Earth Sci., 2020, 8:305.

在研项目

1. 霍英东教育基金会青年教师基金,河道交汇处物质输移与鱼类运动行为的响应机制,主持

2. 国家重点研发计划子题,淮河干流与洪泽湖演变及治理,主持

3. 国家自然基金青年基金,平原河网交汇处复杂河床下污染物迁移转化规律,主持

4. 中央高校基本业务费项目,水利工程下游交汇河道演变规律研究,主持

5. 工程项目,沿江北大道风光带工程防洪评价,主持

6. 国家自然基金面上项目,大型水利工程影响下下游交汇河道演变响应及规律研究,主研

7. 工程项目,上海市水利控制片水资源调度实施细则修编项目,主持

个人主页

https://www.researchgate.net/profile/Saiyu_Yuan